Skip to content

Portable Personalization at Your Service

As the social layer continues its inexorable expansion throughout organizations, a rich set of information about what the users of these social platforms find interesting and beneficial and not so interesting also inexorably expands. This is information that in the old days of computing (i.e., last year :)) would have simply been ignored and discarded.

But now there is an opportunity to put that information to work. From such social-based big data we can apply some fancy algorithms and make some very useful inferences. We can, for example, get a good sense about specific topics that are of interest to particular people. We can do that based on the realization that while each individual action of users tells us a little something about their interests, their collective actions can tell us a lot about their interests. For example, if you view a post or document associated with a given set of topics, it provides a hint that you might have a continuing interest in those topical areas. If you view a couple dozen documents associated with those same topics, it strongly suggests that you have a continuing interest in those topical areas. And, of course, viewing something is just one kind of behavior to consider–there are also actions such as contributing content, likes, comments, following, and so on. This rich variety of behaviors enables inferences to be even better. So applying this approach, systems can continuously learn from you, thereby anticipating your needs and not just reacting, and best of all, without you having to do any extra work!

Now, as a practical matter, even computers can’t be expected to actually always re-compute from scratch inferences of interests based on full behavioral histories. A method is needed to conveniently store a compressed, but still useful, summary of your interest profile. We can do just that with a little math construct that you may remember from your linear algebra class: a vector. A vector is just a fancy word for an ordered set of values. So (2, 33, 7, 12) is a vector. We can generate an interest vector by encoding what we have inferred about your degree of interest in various topics as a set of values (usually normalized in the range of 0-1) that correspond to specific topical areas. For example, (0.04, .0.56, 0.21, 0.78, . . .), where the 0.04 value corresponds to a first topic, 0.56 corresponds to a second topic, and so on. In this case the values imply that we have inferred that you have a much higher interest in the second topic (value of 0.56) than the first topic (value of 0.04). Now let’s say you begin viewing or liking or commenting on some new content associated with the first topic. It is then likely that 0.04 should increase. How much of an increase? That would depend on many factors that the inferencing algorithm would take into account.

So that’s how interest vectors work—they are continuously updated as new information becomes available and they can span hundreds or even thousands of topics, so the interest profile can be extraordinarily fine-grained. This allows them to be used to make very intelligent recommendations, and they can even serve auxiliary purposes, such as being compared among people to identify and match people with similar interests. And similar to interest vectors, expertise vectors can also be generated from behavioral information by using somewhat different algorithms and behavioral perspectives. For example, just viewing a document associated with a topic tells us perhaps a little bit about interests with respect to the topic, but probably nothing about expertise with respect to the topic. However, if you posted content associated with that topic and it received significant attention from those who have already been inferred to have higher-than-average expertise, that would tell us something about your expertise with respect to the topic. As in the case of interest vectors, an expertise vector is a personalization vector that can be applied to make intelligent recommendations, including recommendations of people whose inferred expertise may be quite relevant to a particular item of content you are viewing.

These personalization vectors that respectively summarize your interests and your relative expertise in various topical areas have another very useful property—they can be portable. That is, you could begin using a system you had never used before, but if you provided it your interest and/or expertise vector it could immediately begin being personally anticipatory with you, assuming that the system involved similar topical areas to those encoded in your personalization vectors. Suddenly it’s a very different world than what we have historically put up with—in this new world of portable personalization, all systems become much more intelligent by becoming immediately responsive to your particular interests and expertise! And with social networking becoming ubiquitous in our business as well as personal lives, this new world of portable personalization is just around the corner.

No comments yet

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: